Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1238475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593127

RESUMO

The Feature-based Molecular Networking (FBMN) is a well-known approach for mapping and identifying structures and analogues. However, in the absence of prior knowledge about the molecular class, assessing specific fragments and clusters requires time-consuming manual validation. This study demonstrates that combining FBMN and Mass Spec Query Language (MassQL) is an effective strategy for accelerating the decoding mass fragmentation pathways and identifying molecules with comparable fragmentation patterns, such as beauvericin and its analogues. To accomplish this objective, a spectral similarity network was built from ESI-MS/MS experiments of Fusarium oxysporum at various collision energies (CIDs) and paired with a MassQL search query for conserved beauvericin ions. FBMN analysis revealed that sodiated and protonated ions clustered differently, with sodiated adducts needing more collision energy and exhibiting a distinct fragmentation pattern. Based on this distinction, two sets of particular fragments were discovered for the identification of these hexadepsipeptides: ([M + H]+) m/z 134, 244, 262, and 362 and ([M + Na]+) m/z 266, 284 and 384. By using these fragments, MassQL accurately found other analogues of the same molecular class and annotated beauvericins that were not classified by FBMN alone. Furthermore, FBMN analysis of sodiated beauvericins at 70 eV revealed subclasses with distinct amino acid residues, allowing distinction between beauvericins (beauvericin and beauvericin D) and two previously unknown structural isomers with an unusual methionine sulfoxide residue. In summary, our integrated method revealed correlations between adduct types and fragmentation patterns, facilitated the detection of beauvericin clusters, including known and novel analogues, and allowed for the differentiation between structural isomers.

2.
Front Mol Biosci ; 10: 1192088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293555

RESUMO

Bamboo species have traditionally been used as building material and potential source of bioactive substances, as they produce a wide variety of phenolic compounds, including flavonoids and cinnamic acid derivatives that are considered biologically active. However, the effects of growth conditions such as location, altitude, climate, and soil on the metabolome of these species still need to be fully understood. This study aimed to evaluate variations in chemical composition induced by altitudinal gradient (0-3000 m) by utilizing an untargeted metabolomics approach and mapping chemical space using molecular networking analysis. We analyzed 111 samples from 12 bamboo species collected from different altitudinal ranges using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). We used multivariate and univariate statistical analyses to identify the metabolites that showed significant differences in the altitude environments. Additionally, we used the Global Natural Products Social Molecular Networking (GNPS) web platform to perform chemical mapping by comparing the metabolome among the studied species and the reference spectra from its database. The results showed 89 differential metabolites between the altitudinal ranges investigated, wherein high altitude environments significantly increased the profile of flavonoids. While, low altitude environments significantly boosted the profile of cinnamic acid derivatives, particularly caffeoylquinic acids (CQAs). MolNetEnhancer networks confirmed the same differential molecular families already found, revealing metabolic diversity. Overall, this study provides the first report of variations induced by altitude in the chemical profile of bamboo species. The findings may possess fascinating active biological properties, thus offering an alternative use for bamboo.

3.
Front Microbiol ; 14: 1117559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819067

RESUMO

In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.

4.
Metabolomics ; 18(6): 33, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608707

RESUMO

INTRODUCTION: In microbial metabolomics, the use of multivariate data analysis (MDVA) has not been comprehensively explored regarding the different techniques available and the information that each gives about the metabolome. To overcome these limitations, here we show the use of Fusarium oxysporum cultured in the presence of exogenous alkaloids as a model system to demonstrate a comprehensive strategy for metabolic profiling. MATHERIALS AND METHODS: F. oxysporum was harvested on different days of incubation after alkaloidal addition, and the chemical profiles were compared using LC-MS data and MDVA. We show significant innovation to evaluate the chemical production of microbes during their life cycle by utilizing the full capabilities of Partial Least Square (PLS) with microbial-specific modeling that considers incubation days, media culture availability, and growth rate in solid media. RESULTS AND DISCUSSCION: Results showed that the treatment of the Y-data and the use of both PLS regression and discrimination (PLSr and PLS-DA) inferred complemental chemical information. PLSr revealed the metabolites that are produced/consumed during fungal growth, whereas PLS-DA focused on metabolites that are only consumed/produced at a specific period. Both regression and classificatory analysis were equally important to identify compounds that are regulated and/or selectively produced as a response to the presence of the alkaloids. Lastly, we report the annotation of analogs from the piperidine alkaloids biotransformed by F. oxysporum as a defense response to the toxic plant metabolites. These molecules do not show the antimicrobial potential of their precursors in the fungal extracts and were rapidly produced and consumed within 4 days of microbial growth.


Assuntos
Metaboloma , Metabolômica , Cromatografia Líquida/métodos , Análise dos Mínimos Quadrados , Espectrometria de Massas/métodos
5.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221343, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394010

RESUMO

Abstract We present a survey of projects that have been funded by FAPESP under the BIOTA-Microorganisms program. These projects generated a wide variety of results, including the identification of novel antibacterial-producing microorganisms, the characterization of novel microbial enzymes for industrial applications, taxonomic classification of novel microorganisms in several environments, investigation of the soil and mangrove microbial ecosystems and its influence on endangered plant species, and the sequencing of novel metagenome-assembled genomes. The results surveyed demonstrate the importance of microorganisms in environments that play important roles in human activities as well as the potential that many of these microorganisms have in contributing to biotechnological applications crucial for human survival in the 21st century.


Resumo Apresentamos um levantamento comentado de projetos financiados pelo programa BIOTA-Micro-organismos. Estes projetos geraram uma variada gama de resultados, incluindo a identificação de novos micro-organismos produtores de compostos antibacterianos, a caracterização de novas enzimas microbianas para usos industriais, classificação taxonômica de novos micro-organismos presentes em diversos ambientes, investigação de ecossistemas microbianos em solos e mangues e sua influência sobre plantas ameaçadas, e o sequenciamento de vários novos genomas microbianos derivados de metagenomas. Os resultados descritos demonstram o papel-chave de micro-organismos em ecossistemas importantes para atividades humanas, assim como o potencial que vários desses micro-organismos tem de contribuir para aplicações biotecnológicas cruciais para a sobrevivência humana no século 21.

6.
Arch Microbiol ; 203(6): 3025-3032, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779769

RESUMO

This work has as the main focus, to analyze the behavior of physic-chemical variations from the fungus Xylaria sp., through the OSMAC (One Strain, Many Compounds) approach as an efficient way of obtaining new compounds. To perform such inductions and to explore the variability of the metabolic network of this microorganism, a factorial design was designed to induce variability (or enhancement) of metabolites. In view of chemometric insights, the planned inductions were imposed on the microorganism and variations in the chemical profile were observed in the crude extracts. Through mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance-based profiles, combined with multivariate analysis through Principal Component Analysis (PCA), it was observed a marked variability of signals, confirming the efficacy in the metabolic alteration, defining the culture medium and agitation as the most important variables in the metabolic variability of the fungus. However, the extract mass is more significant for the agitation variable, and there is no relationship between the mass of crude extract and the amount of molecular signals of the complex matrices studied.


Assuntos
Ascomicetos , Técnicas Microbiológicas , Projetos de Pesquisa , Ascomicetos/química , Ascomicetos/metabolismo , Meios de Cultura , Endófitos/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
7.
Food Chem Toxicol ; 145: 111619, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32791243

RESUMO

This is the first work to use a polyphenolic fraction derived from peanut skin to attenuate the toxicity induced by advanced glycation-end products (AGEs) in RAW264.7 macrophages. The RAW264.7 cells were stimulated by AGEs using the bovine serum albumin-fructose (BSA-FRU), bovine serum albumin-methylglyoxal (BSA-MGO) and arginine-methylglyoxal (ARG-MGO) models. The AGEs increased considerably the levels of reactive oxygen species and the gene expression of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide. Twenty-eight polyphenols, including catechin, phenolic acids, and resveratrol were annotated in peanut skin extract (PSE) with the use of ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MSE) and to the UNIFI Scientific Information System. The administration of PSE at 100 and 150 µg/mL significantly inhibited oxidative stress, by suppressing the production of reactive oxygen species up to 70% and reducing the production of nitric oxide, IL-6 and TNF-α up to 1.7-, 10- and 107-fold, respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Arachis/química , Produtos Finais de Glicação Avançada/toxicidade , Nozes/química , Polifenóis/farmacologia , Animais , Interleucina-6/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Eur J Mass Spectrom (Chichester) ; 26(4): 281-291, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32362135

RESUMO

Fungi are an important source of natural products found in a variety of plant species. A wide range of methods for the detection of metabolites present in fungi have been reported in the literature. The search for methodologies that allow the rapid detection of compounds present in crude extracts is crucial to enable the metabolite annotation doing a qualitative analysis of the complex matrix. Mass spectrometry is an important ally when it comes to in silico detection of previously reported metabolites. In this work, the ethyl acetate extract of Fusarium solani was analyzed by gas chromatography coupled to mass spectrometry (GC/MS) after derivatization process. The ethyl acetate extract was also investigated by liquid chromatography coupled with high-resolution tandem mass spectrometry assisted by the UNIFI software system. A library containing previously reported metabolites from the Fusarium genus was added to the UNIFI platform. Simultaneously, the extract was analyzed through anticholinesterase and antifungal assays. The analysis of the derivatized extract by GC/MS led to the putative identification of five metabolites, and the investigation using Ultra-High Performance Liquid Chromatography - Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF) analysis in data-independent acquisition mode (mass spectrometry) led to the annotation of 15 compounds present in the built-in Fusarium library added to the UNIFI system. The Fusarium solani extract showed potential anticholinesterase and in vitro antifungal activity supported by the detection of bioactive metabolites.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fusarium/química , Fusarium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Senna (Planta)/microbiologia , Software , Sistemas de Informação
9.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8533, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330071

RESUMO

RATIONALE: Aporphine alkaloids represent a large group of isoquinoline natural products with important roles in biological and biomedical areas. Their characterization by electrospray ionization tandem mass spectrometry (ESI-MS/MS) can contribute to their rapid identification in complex biological matrices. METHODS: We report the fragmentation of protonated 7,7-dimethylaporphine alkaloids by ESI-MS/MS, and the putative annotation of aporphine alkaloids in plant extracts. We used low- and high-resolution MS/MS analyses to rationalize the fragmentation pathways, and employed the B3LYP/6-31 + G(d,p) density functional theory (DFT) model to provide thermochemical parameters and to obtain the reactive sites. RESULTS: DFT calculations of a set of 7,7-dimethylaporphine alkaloids suggested the heterocyclic amino group as the most basic site due to the proton affinity of the nitrogen atom. Collision-induced dissociation experiments promoted • OCH3 elimination instead of the expected neutral loss of the heterocyclic amino group, pointing to the [M - 15 + H]•+ ion as the diagnostic fragment for 7,7-dimethylaporphine alkaloids. The analysis of plant extracts led to the annotation of 25 aporphine alkaloids. Their fragmentation initiated with the loss of the amino group followed by formation of a cyclic carbocation. Further reactions derived from consecutive charge-remote and/or charge-induced fragmentations of the substituents attached to the aromatic system. The mechanisms were re-examined based on plausible gas-phase ion chemistry reactions. CONCLUSIONS: Taken together, the diagnostic product ions and the series of radical and neutral eliminations provided information about the location of methylenedioxy, aromatic methoxy, and vicinal methoxy and hydroxy groups in aporphine alkaloids, assisting their characterization via MS/MS.

11.
Anal Chem ; 91(16): 10413-10423, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313915

RESUMO

Flavonoids represent an important class of natural products with a central role in plant physiology and human health. Their accurate annotation using untargeted mass spectrometry analysis still relies on differentiating similar chemical scaffolds through spectral matching to reference library spectra. In this work, we combined molecular network analysis with rules for fragment reactions and chemotaxonomy to enhance the annotation of similar flavonoid glyconjugates. Molecular network topology progressively propagated the flavonoid chemical functionalization according to collision-induced dissociation (CID) reactions, as the following chemical attributes: aglycone nature, saccharide type and number, and presence of methoxy substituents. This structure-based distribution across the spectral networks revealed the chemical composition of flavonoids across intra- and interspecies and guided the putatively assignment of 64 isomers and isobars in the Chrysobalanaceae plant species, most of which are not accurately annotated by automated untargeted MS2 matching. These proof of concept results demonstrate how molecular networking progressively grouped structurally related molecules according to their product ion scans, abundances, and ratios. The approach can be extrapolated to other classes of metabolites sharing similar structures and diagnostic fragments from tandem mass spectrometry.


Assuntos
Chrysobalanaceae/química , Flavonoides/isolamento & purificação , Glicoconjugados/isolamento & purificação , Glicosídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Chrysobalanaceae/metabolismo , Flavonoides/química , Flavonoides/classificação , Glicoconjugados/química , Glicoconjugados/classificação , Glicosídeos/química , Glicosídeos/classificação , Glicosilação , Espectrometria de Massas por Ionização por Electrospray
12.
J Mass Spectrom ; 54(7): 634-642, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31144377

RESUMO

Natural 2H-chromenes were isolated from the crude extract of Piper aduncum (Piperaceae) and analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) applying collision-induced dissociation. Density functional theory (DFT) calculations were used to explain the preferred protonation sites of the 2H-chromenes based on thermochemical parameters, including atomic charges, proton affinity, and gas-phase basicity. After identifying the nucleophilic sites, the pathways were proposed to justify the formation of the diagnostic ions under ESI-MS/MS conditions. The calculated relative energy for each pathway was in good agreement with the energy-resolved plot obtained from ESI-MS/MS data. Moreover, the 2H-chromene underwent proton attachment on the prenyl moiety via a six-membered transition state. This behavior resulted in the formation of a diagnostic ion due to 2-methylpropene loss. These studies provide novel insights into gas-phase dissociation for natural benzopyran compounds, indicating how reactivity is correlated to the intrinsic acid-base equilibrium and structural aspects, including the substitution pattern on the aromatic moiety. Therefore, these results can be applied in the identification of benzopyran derivatives in a variety of biological samples.


Assuntos
Benzopiranos/química , Modelos Químicos , Piper/química , Benzopiranos/isolamento & purificação , Íons , Estrutura Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
Magn Reson Chem ; 57(8): 458-471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993742

RESUMO

Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.


Assuntos
Técnicas de Cultura de Células/métodos , Citocalasina D/metabolismo , Ácido Fusárico/biossíntese , Metabolômica/métodos , Nitrocompostos/metabolismo , Propionatos/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Citocalasina D/análise , Ácido Fusárico/análise , Nitrocompostos/análise , Propionatos/análise , Espectroscopia de Prótons por Ressonância Magnética
14.
Molecules ; 24(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909567

RESUMO

Biodiversity is key for maintenance of life and source of richness. Nevertheless, concepts such as phenotype expression are also pivotal to understand how chemical diversity varies in a living organism. Sesquiterpene pyridine alkaloids (SPAs) and quinonemethide triterpenes (QMTs) accumulate in root bark of Celastraceae plants. However, despite their known bioactive traits, there is still a lack of evidence regarding their ecological functions. Our present contribution combines analytical tools to study clones and individuals of Maytenus ilicifolia (Celastraceae) kept alive in an ex situ collection and determine whether or not these two major biosynthetic pathways could be switched on simultaneously. The relative concentration of the QMTs maytenin (1) and pristimerin (2), and the SPA aquifoliunin E1 (3) were tracked in raw extracts by HPLC-DAD and ¹H-NMR. Hierarchical Clustering Analysis (HCA) was used to group individuals according their ability to accumulate these metabolites. Semi-quantitative analysis showed an extensive occurrence of QMT in most individuals, whereas SPA was only detected in minor abundance in five samples. Contrary to QMTs, SPAs did not accumulate extensively, contradicting the hypothesis of two different biosynthetic pathways operating simultaneously. Moreover, the production of QMT varied significantly among samples of the same ex situ collection, suggesting that the terpene contents in root bark extracts were not dependent on abiotic effects. HCA results showed that QMT occurrence was high regardless of the plant age. This data disproves the hypothesis that QMT biosynthesis was age-dependent. Furthermore, clustering analysis did not group clones nor same-age samples together, which might reinforce the hypothesis over gene regulation of the biosynthesis pathways. Indeed, plants from the ex situ collection produced bioactive compounds in a singular manner, which postulates that rhizosphere environment could offer ecological triggers for phenotypical plasticity.


Assuntos
Maytenus/química , Extratos Vegetais/química , Espermidina/análogos & derivados , Triterpenos/química , Alcaloides/química , Alcaloides/isolamento & purificação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Ecologia , Humanos , Triterpenos Pentacíclicos , Casca de Planta/química , Raízes de Plantas/química , Piridinas/química , Piridinas/isolamento & purificação , Quinonas/química , Quinonas/isolamento & purificação , Rizosfera , Espermidina/química , Espermidina/isolamento & purificação , Triterpenos/isolamento & purificação
15.
Bioorg Chem ; 86: 550-556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782573

RESUMO

Regio and stereoselective activation of sp3 CH bonds remain one of the major advantages of biocatalysis over traditional chemocatalytic methods. Herein, we describe the oxy-functionalization of halimane diterpenoid 1 by whole cells of three filamentous fungi, aiming to obtain derivatives with desirable biological properties. After incubating 1 with Fusarium oxysporum, Myrothecium verrucaria, and Rhinocladiella similis at different concentrations and incubation times, four known (3, 5, 6, and 7) and three new (2, 4, and 8) halimane derivatives were obtained and characterized. F. oxysporum catalyzed the hydroxylation of positions C-2 (2) and C-7 (4), while R. similis simultaneously mediated the 2-oxo-functionalization and the hydration of 13,14-(CC)double bond belonging to an α,ß-unsaturated carbonyl system (8). Compounds 1-7 were non-cytotoxic against HCT-116 and MCF-7 cancer cell lines at tested concentrations. However, substrate 1 displayed moderate reduction ability against biofilm produced by Staphylococcus epidermidis ATCC35984 (84% at 1.6 mM), and this effect was retained to some extent by derivatives 4 and 7. These results emphasize the prominent potential of filamentous fungi associated with the microbiota of medicinal plants as versatile catalysts for singularly useful reactions through their complex enzymatic machinery, as well as the high susceptibility of halimane-diterpenoid substrates.


Assuntos
Antineoplásicos/metabolismo , Ascomicetos/metabolismo , Diterpenos/metabolismo , Fusarium/metabolismo , Hypocreales/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Ascomicetos/citologia , Biofilmes/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fusarium/citologia , Células HCT116 , Humanos , Hypocreales/citologia , Células MCF-7 , Estrutura Molecular , Oxirredução , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Phytochem Anal ; 29(2): 196-204, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28990237

RESUMO

INTRODUCTION: Byrsonima species have been used in the treatment of gastrointestinal and gynecological inflammations, skin infections and snakebites. Based on their biological activities, it is important to study other organisms from this genus and to identify their metabolites. OBJECTIVES: To determine the metabolic fingerprinting of methanol and ethyl acetate extracts of four Byrsonima species (B. intermedia, B. coccolobifolia, B. verbascifolia and B. sericea) by HPLC-DAD-ESI-MS/MS and evaluate their in vitro antioxidant, anti-glycation, anti-inflammatory and cytotoxic activities. MATERIALS AND METHODS: Antioxidant activity was determined by DPPH˙, ABTS˙+ and ROO˙ scavenging assays. Anti-glycation activity was evaluated by the ability to inhibit the formation of advanced glycation endproducts (AGEs). Anti-inflammatory activity was evaluated using a murine macrophage cell line (RAW 264-7) in the presence of lipopolysaccharide (LPS). Tumour necrosis factor alpha (TNF-α) and nitrite (NO2- ) production were measured by ELISA and the Griess reaction, respectively. The compounds present in the extracts were tentatively identified by HPLC-DAD-ESI-MS/MS. RESULTS: The evaluation of the biological activities showed the potential of the extracts. The activities were assigned to the presence of glycoside flavonoids mainly derived from quercetin, quinic acid derivatives, gallic acid derivatives, galloylquinic acids and proanthocyanidins. Two isomers of sinapic acid-O-hexoside were described for the first time in a Byrsonima species. CONCLUSION: This research contributes to the study of the genus, it is the first report of the chemical composition of B. sericea and demonstrates the importance of the dereplication process, allowing the identification of known compounds without time-consuming procedures. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Malpighiaceae/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Células RAW 264.7
17.
Sci Rep ; 7(1): 7215, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775335

RESUMO

The intrinsic value of biodiversity extends beyond species diversity, genetic heritage, ecosystem variability and ecological services, such as climate regulation, water quality, nutrient cycling and the provision of reproductive habitats it is also an inexhaustible source of molecules and products beneficial to human well-being. To uncover the chemistry of Brazilian natural products, the Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products Database (NuBBEDB) was created as the first natural product library from Brazilian biodiversity. Since its launch in 2013, the NuBBEDB has proven to be an important resource for new drug design and dereplication studies. Consequently, continuous efforts have been made to expand its contents and include a greater diversity of natural sources to establish it as a comprehensive compendium of available biogeochemical information about Brazilian biodiversity. The content in the NuBBEDB is freely accessible online (https://nubbe.iq.unesp.br/portal/nubbedb.html) and provides validated multidisciplinary information, chemical descriptors, species sources, geographic locations, spectroscopic data (NMR) and pharmacological properties. Herein, we report the latest advancements concerning the interface, content and functionality of the NuBBEDB. We also present a preliminary study on the current profile of the compounds present in Brazilian territory.


Assuntos
Biodiversidade , Bases de Dados Factuais , Bioquímica , Produtos Biológicos , Brasil , Descoberta de Drogas , Humanos , Farmacologia , Navegador
18.
R Soc Open Sci ; 4(11): 170854, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29291077

RESUMO

Biotransformation of natural products by filamentous fungi is a powerful and effective approach to achieve derivatives with valuable new chemical and biological properties. Although diterpenoid substrates usually exhibit good susceptibility towards fungi enzymes, there have been no studies concerning the microbiological transformation of halimane-type diterpenoids up to now. In this work, we investigated the capability of Fusarium oxysporum (a fungus isolated from the rhizosphere of Senna spectabilis) and Myrothecium verrucaria (an endophyte) to transform halimane (1) and labdane (2) acids isolated from Hymenaea stigonocarpa (Fabaceae). Feeding experiments resulted in the production of six derivatives, including hydroxy, oxo, formyl and carboxy analogues. Incubation of 1 with F. oxysporum afforded 2-oxo-derivative (3), while bioconversion with M. verrucaria provided 18,19-dihydroxy (4), 18-formyl (5) and 18-carboxy (6) bioproducts. Transformation of substrate 2 mediated by F. oxysporum produced a 7α-hydroxy (7) derivative, while M. verrucaria yielded 7α- (7) and 3ß-hydroxy (8) metabolites. Unlike F. oxysporum, which showed a preference to transform ring B, M. verrucaria exhibited the ability to hydroxylate both rings A and B from substrate 2. Additionally, compounds 1-8 were evaluated for inhibitory activity against Hr-AChE and Hu-BChE enzymes through ICER-IT-MS/MS assay.

19.
Front Mol Biosci ; 3: 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747213

RESUMO

Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.

20.
J Sep Sci ; 39(6): 1023-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757030

RESUMO

A major challenge in metabolomic studies is how to extract and analyze an entire metabolome. So far, no single method was able to clearly complete this task in an efficient and reproducible way. In this work we proposed a sequential strategy for the extraction and chromatographic separation of metabolites from leaves Jatropha gossypifolia using a design of experiments and partial least square model. The effect of 14 different solvents on extraction process was evaluated and an optimized separation condition on liquid chromatography was estimated considering mobile phase composition and analysis time. The initial conditions of extraction using methanol and separation in 30 min between 5 and 100% water/methanol (1:1 v/v) with 0.1% of acetic acid, 20 µL sample volume, 3.0 mL min(-1) flow rate and 25°C column temperature led to 107 chromatographic peaks. After the optimization strategy using i-propanol/chloroform (1:1 v/v) for extraction, linear gradient elution of 60 min between 5 and 100% water/(acetonitrile/methanol 68:32 v/v with 0.1% of acetic acid), 30 µL sample volume, 2.0 mL min(-1) flow rate, and 30°C column temperature, we detected 140 chromatographic peaks, 30.84% more peaks compared to initial method. This is a reliable strategy using a limited number of experiments for metabolomics protocols.


Assuntos
Jatropha/metabolismo , Metaboloma , Metabolômica/métodos , Folhas de Planta/metabolismo , Cromatografia Líquida de Alta Pressão , Jatropha/química , Análise dos Mínimos Quadrados , Modelos Moleculares , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...